RF/Microwave multilayer ceramic chip capacitor/MLCC

CCAA Equal MIL-PRF-55681/4/5

1. Capacitor characteristics and applications

1.1 FEATURES

- Size specification serial, suitable for surface mounting elements of hybrid integrated circuit or printed circuit;
- It has the characteristics of low loss, high electrical capacity stability and high reliability;
- Suitable for all kinds of equipment in the high frequency circuit, amplification circuit;

1.2 Main performance indicators

- Temperature coefficient: NPO: 0 ± 30ppm / ℃
- Capacitance drift: no more than ± 0.2% or ± 0.05 pF, take the larger
- Loss angle tangent: not exceeding 0. 15% at a frequency of 1 MHz / 1 KHz
- Insulation resistance (25°C): 100000M Ω
- Medium voltage resistance (test surge current does not exceed 50mA): 2.5 UR
- Operating temperature: -55~125°C

<u>4R7</u> **CCDA** 0505 N <u>B</u> <u>1H</u> Ζ M L Allowable failure rated deviation of model characteristic rated voltage capacitance the electrical capacitance CCDA: N:0± 0505 The first and Base metal ≤ 1.0%/ B: ±0.1pF 1H: 50V Class 1 1111 30ppm /C shield tin (tin / 1000h second digits C: ±0.25pF 2A: 100V lead alloy with porcelain 1812 represent D: ±0.50pF 2R: 150V dielectric significant at least 3% J: ±5% 2D: 200V capacitor numbers, and lead) K: ±10% the last digit is the number of zeros that follow

2. Product model naming Specification

3. Product dimensions

ROHS

mod	el	Dimensions (mm)					
The British system said	Metric representation	L	W	T _{max}			
0505	1212	$1.40 \begin{array}{c} +0.38 \\ -0.25 \end{array}$	1.40±0.38	1.45			
1111	2828	$2.79 \begin{array}{c} +0.51 \\ -0.25 \end{array}$	2.79±0.38	2.59			
1812	4532	4.50±0.40	3.20±0.30	3.10			

Note: Products that meet customer requirements can be designed according to the special requirements of customers.

order number	name			
1	ceramic dielectric			
2	inner electrode			
3	External electrode			
4	nickel dam			
5	Lead tin layer			

4. Capacity range

4.1 0505 Specification capacity value table

Toleranc e code	Toleranc e (pF)	accur acy	Maximum direct current operating voltage (V)	Toleranc e code	Toleranc e (pF)	accuracy	Maxim um direct current operati ng voltage (V)	Toleranc e code	Toleranc e (pF)	accuracy	Maximum direct current operating voltage (V)	Capacity value code	Capacity value (pF)	accuracy	Maximum direct current operating voltage (V)
0R2	0.2							9R1	9.1	B,C		510	51		
0R3	0.3	вC		1R9	1.9							510	50		
0R4	0.4	0,0		2R0	2			100	10			500	50		
				2R1	2.1			110	11			620	62		
				2R2	2.2			120	12			750	75		150
0P5	0.5			2R4	2.4			130	13			200	75 92		
000	0.5			2R7	2.7			150	15			020	02		
	0.0			3R0	3			160	16			910	91		
	0.7			3R3	3.3			180	18			101	100	F,G,	
	0.0			3R6	3.6			200	20	F,G,					
400	0.9		200	3R9	3.9	B,C, D	200	220	22	J,K,	200	111	110	J,K,	
	1			4R3	4.3			240	24	М		101	100	М	50
1R1	1.1	B,C,		4R7	4.7			270	27	IVI		121	120		
1R2	1.2	D		5R1	5.1			300	30						
1R3	1.3			5R6	5.6			330	33						
1R4	1.4			6R2	6.2			360	36						
1R5	1.5			6R8	6.8			390	39						
186	1.6			7R5	7.5			430	43						
1R7	1./			8R2	8.2			470	47						
1R8	1.8							770	'ד						

0505 specification and value table

4.2 1111 Specification capacity value table

Maximum Maximum Maximum Maximum Tolerance Tolerance Tolerance current Tolerance Tolerance current current (pF) (pF) code (pF) voltage (V) voltage (V) 151 150 0R2 0.2 200 20 2R4 2.4 0R3 0.3 161 160 B,C 220 22 2R7 2.7 0R4 0.4 181 180 240 24 3R0 3 201 200 200 270 27 3R3 3.3 220 221 300 30 3R6 0R5 0.5 3.6 241 240 330 33 3R9 3.9 0R6 0.6 271 270 360 36 0R7 0.7 4R3 4.3 B,C, 390 39 4R7 4.7 0R8 0.8 301 300 150 D 430 43 5R1 5.1 0R9 0.9 331 330 470 47 5R6 5.6 1R0 1 361 360 100 510 51 1R1 1.1 6R2 6.2 391 390 F,G, F,G 560 56 6R8 1R2 1.2 6.8 200 200 200 ,J,K, J,K, 431 430 7R5 Μ Μ 7.5 1R3 1.3 B,C, 471 470 620 62 8R2 1R4 1.4 8.2 D 680 68 9R1 9.1 1R5 1.5 75 750 1R6 1.6 820 82 1R7 1.7 100 10 910 91 1R8 1.8 50 110 11 101 100 1R9 1.9 120 12 F,G, 111 110 2R0 2 130 13 J,K, 121 120 2R1 2.1 150 15 Μ 131 130 2R2 2.2 160 16 180 18

1111 Specification capacity value table

4.3 1812 Specification capacity value table

1812 Specification value table

Tolerance code	Tolerance (pF)	accuracy	Maximum direct current operating voltage (V)	Tolerance code	Tolerance (pF)	accuracy	Maximum direct current operating voltage (V)	Tolerance code	Tolerance (pF)	accuracy	Maximum direct current operating voltage (V)	Capacity value code	Capacity value (pF)	accuracy	Maximum direct current operating voltage (V)					
				4R3	4.3							241	240							
0R5	0.5			4R7	4.7			330	33			271	270							
0R6	0.6			5R1	5.1			360	36			301	300							
0R7	0.7			5R6	5.6			390	39			331	330							
0R8	0.8			6R2	6.2	RCD		430	43			361	360		200					
0R9	0.9			6R8	6.8	В,С,В		470	47			391	390							
1R0	1			7R5	7.5			510	51			431	430							
1R1	1.1			8R2	8.2	8.2 9.1 10 11 12	8.2 9.1 10 11 200	8.2 9.1		560	56			471	470					
1R2	1.2			9R1	9.1							620	62							
1R3	1.3								680	68			511	510	F,G	150				
1R5	1.5			100	10				750	75	F,G,		561	560		100				
1R6	1.6	B,C,D	200	110	11							200	820	82	J,K,	200	621	620	,с, К.	
1R8	1.8			120	12				910	91	М		681	680	M					
2R0	2			130	13			101	100			751	750		100					
2R1	2.1			150	15							111	110			821	820			
2R2	2.2			160	16	F,G,		121	120											
2R4	2.4			180	18	J,K,		131	130											
2R7	2.7			200	20	М		151	150			911	910							
3R0	3			220	22	2 4 7		161	160			102	1000							
3R3	3.3			240	24			181	180			112	1100		50					
3R6	3.6			270	27			201	200			122	1200							
3R9	3.9			300	30			221	220											

5. Technical requirements and test conditions

5.1 Conventional electrical performance

project	tec speci	hnical fications		test method							
operating temperature range	(-55 ~	• +125) ℃									
surface	no sig de	gnificant efect		eyeballing							
Electrostatic	Wit	nin the	nominal capacity	nominal capacity Test frequency test voltage ambient te							
capacity of	specific	ation error	≤1000pF	1MHz (±10%)	%) (1.0.0.0))(
Capacitance			>1000pF	1KHz (±10%)	(1.0±0.2)viiiis	(20±2).				
loss tangent (DF)	The fre Not at 1 I Over	quency is MHz / 1 KHz ⁻ 0. 15%	-	Test method: the	same as the "static elec	ctricity capacity"					
insulation			rated voltage	test voltage	testing time	Charge and discharge current	environment				
(I .R). Insulation	≥100000M Ω		Ur <1000V	Ur	(60±5) sec	≤50mA	temperature (25±2)℃				
Resistance			Ur ≥1000V	1000V	(60±5) sec	≤50mA	Humidity was <75%				
Electric resistance	Media	should not	rated voltage	voltage test voltage duration Charg		Charge and curre	Charge and discharge current				
strength of the medium (D .W .V).	be broken down or damaged		All voltage	2.5Ur	5 Seconds	≤50n	۱A				
			The following temperature order, 30min after temperature stability ($ riangle$ C to T 3)								
			step	step temperature (°C)							
Capacity			T 1	T 1 25±2							
coefficient or	C 0G : pp	: (0±30) m /℃	T 2	Lower limit Category temperature (-55 ± 3)							
characteristics			Т 3	3 25±2							
			T 4	Upper limit Category temperature (125 ± 2)							
			T 1		25±2						
	£	No visible damage,	Absolve the temperatur	capacitor in etha e at (80~120) ℃	anol and rosin (25% w (10-30) seconds, and	eight) solution, soak the solde	remove the r solution.				
Solder ability	surface	injury, on tin rate of	Tin immersion	temperature: (24	5 ± 2) ℃; tin immersior	n speed: (25 ± 0.	25) mm / sec				
		95%		Tin im	mersion time: (5 ± 0.5)	sec					
When testing external environ	remarks: When testing the dielectric power resistance strength of the capacitor, in order to eliminate the influence of the external environment, when the test voltage exceeds 2000 Vdc, then the capacitor should be soaked in insulating oil for testing										

ROHS

5.2 Quality consistency test

Quality consistency test is A group A test, consisting of the following table and performed in the order shown. Equal MIL-PRF-55681/4/5

divide into groups	inspecting item	Requires the chapter number	Test method chapter number	sampling plan
A divide into groups	Voltage treatment	3.8 in ZZR-Q / CT 20003-2018	4.5.3 in GJB 192B- 2011	100%
A divide into groups	Insulation resistance (125 $^\circ\!\mathbb{C}$)	3.11 in ZZR-Q / CT 20003- 2018	4.5.6 in GJB 192B- 2011	In accordance with GJB 192B-2011 Table 6
A divide into groups	Visual and mechanical inspection	3.3 in ZZR-Q / CT 20003- 2018, .4.1 3,3.28 ,3.29	4.5.2 in GJB 192B- 2011	In accordance with GJB 192B-2011 Table 6
A divide into groups	solder ability	3.15 in ZZR-Q / CT 20003- 2018	4.4.2 in GJB 192B- 2011	13 samples, and 0 failed

6.2.1 A1 group ——, voltage treatment

100% test, requirements: when appropriate, can select voltage processing screening. Test temperature: 125_0^{+4} °C; Test time: 96_0^{+4} hour; Applied voltage: $2U_R$

6.2.2 A2 block —— Insulation Resistance (125℃)

Sampling test according to the requirements in Table 6 in GJB 192B-2011,

Test temperature: 125.4° C; test voltage U_C: U_C= U_R (U_R<1000V); Applied voltage time: (60 ± 5) seconds.

6.2.3 A3 group —— appearance and mechanical inspection

Sampling test according to the requirements in Table 6 in GJB 192B-2011, The size suitable for the gauge inspection shall be inspected;

Visual inspection of the sheet capacitor under a microscope (10 times magnification): No cracks and cracks, layering, and electrode exposure are allowed on the surface of the capacitor.

6.2.4 A4 grouping —— soldability

Draw 5 products from each batch;

Test conditions: the lead end of the capacitor continues in the welding tin groove of (245 ± 2) $^{\circ}$ C (5 ± 0.5) S;

Requirements: After testing, perform a visual inspection with a 10 x magnification lens. The surface of the lead end should be 95% evenly stained with tin, tin layer continuous. The remaining 5% allows only very small pinholes and no defects with solder immersion, but should not be concentrated in one area.

6. Notes for use

0. Notes for use									
Notes for MLCC									
1. Notes before use:									
The MLCC chip may be damaged under the harsh working environment or the external mechanical overpressure described in the relevant instructions in this admission letter, so first considering the relevant conditions in this admission letter.									
2. The recommended layout of the PC board design									
2.1 The amount of solder used will affect the ability of the chip to resist mechanical stress, which may lead to the breakage or cracking of MLCC. Therefore, when designing the substrate, we must carefully consider the size and configuration of the welding pad, which has a decisive role in the amount of the solder composed of the substrate. 2.2 When designing the position of the pad and SMD MLCC, the stress shall be									
reduced to the lowest point, and the MLCC shall be installed in the least affected position on the PC plate.	切乜 								
3. Automatic installation should consider the problems									
If the suction tube drops beyond the minimum limit, it will produce excessive pressure rupture. When lowering the tube, pay attention to the following points:	on the MLCC, which will cause the MLCC								
3.1 After correcting the deviation of the PC plate, the low limit of the suction tube shi position of the PC plate.	ouid be adjusted to the surface horizontal								
3.2 The suction pressure shall be adjusted between 1 and 3N.									
3.3 In order to reduce the deformation degree of the PC plate caused by the impact for placed under the PC plate.	rce of the suction, the support nail shall be								
4. Welding	-温度(℃) 手工焊接温度曲线 230℃								
4.1 MLCC is a combination of ceramic and metal. As a ceramic body, especially the large size ceramic body, its thermoplasticity is poor, the response to heat is relatively slow, by the cold and hot, the ceramic body is easy to crack. It is recommended to conduct continuous preheating for more than 1 minute before welding. The interior of the 4.2 MLCC is a metal electrode, which is very thermoplastic and responds responsive to heat. Therefore, in the case of heat, the metal part and the ceramic part must have a certain degree of inconsistent expansion, resulting in	300 250 250 150 150 50 ->1分钟 最多3秒 自然冷 却								
internal stress, easy to cause porcelain cracking. It is recommended to conduct	温度(℃) 无铅焊接推荐用温度曲线								
4.3 For manual welding, the maximum diameter of the tip with constant temperature iron is 1.0mm and the maximum power is 25 watts; the iron cannot directly touch the MLCC element.	250 200 150 100 50								
5. Cleaning	>1分钟 >1分钟 最多 自然 10秒 冷却								
5.1 The temperature difference between the components and the cleaning process sha	all not be greater than 100°C.								
5.2 In the case of ultrasonic cleaning, if the output power is too large, the PC plate wi cause the MLCC or welding point to crack, or reduce the strength of the end electropaid to the following points:	Il withstand excessive vibration, which will de. Therefore, special attention should be								
Ultrasonic output: less than 20W / L; ultrasonic frequency: less than 40 KHz; ultrasonic	c cleaning time: 5 minutes or less								
6. Cut the PC plate									
6.1 After installing the MLCC and other components, note that any force should be tolerate excess	e applied to the PC board. MLCC cannot								
6.2 The segmentation of the board cannot be divided by hand, and appropriate equipm	nent should be used.								
7. Storage method									
To maintain the weldability of the end electrodes and to keep the packaging mater storage conditions are as follows:	ials in good condition, the recommended								
Storage temperature: (5-40) °C; storage relative humidity: (20-70)% RH									
The MLCC end weldability decreases over time even when stored under ideal storage within 6 months from the date of shipment.	e conditions, so the MLCC should be used								

RoHS

7. Product packaging

7.1 bags in bulk

specifications	bulk	remarks
0505	5000	
1111	2000	Packaging form and quantity can be determined according to the customer's requirements
1812	50	

7.2 Paper tape packaging

7.2.1Paper tape coil structure

7.3 Plastic tape packaging

7.3.1 Plastic tape coil structure

紙帶傳送方向

7.4 Front and rear structure of the conveyor belt

*傳送帶的前后結構

Structure of leader part and end part of the carrier paper

RoHS

7.5 Reel dimensions

*卷盤尺寸 Reel Dimensions (unit:mm)

А	В	С	D	E	F	G
Φ 178.00±2.00	3.00	Φ13.00±0.50	Ф21.00±0.80	Φ 50.00 or greater	10.00±1.50	12Max
Φ 330.00±2.00	3.00	Φ13.00±0.50	Ф21.00±0.80	Φ 50.00 or greater	10.00±1.50	12Max

7.6 Ribbon preparation method

8.6.1 The belt of the packaging capacitor is wound clockwise. When the belt is pulled from the top to the down direction, the transfer hole is on the right side of the belt.

8.6.2 For the front end of the strip, leave at least 5 spaced strips.

.38.6 When compiling the belt, the lead belt part or blank part must be reserved according to the figure below.

8.6.4 The number of product errors in the installation of the disk must be less than 0. 1% of the number or 1 per disk, discontinuous errors.

8.6.5 The upper and lower tape shall not exceed the edge of the tape and shall not block the transfer hole.

8.6.6 The cumulative error of the transmission hole is 10 spacing: \pm 0.3 mm.

8.6.7 The stripping moment of the upper tape shall be within 0.1 to 0.7 Newton as shown in the following below.

